EOG眨眼分类
Here is a basic example for classifying blinks from EOG signals using KNN in Matlab.
% Load EOG signal data
data = load('eog_signal.mat');
eog = data.eog;
% Get n samples before and after each blink for analysis
n = 100;
% Detect blink locations
blinks = find(eog < -500);
% Extract n samples before and after each blink
blink_feats = zeros(length(blinks), 2*n);
for i = 1:length(blinks)
feat = eog(blinks(i)-n : blinks(i)+n);
blink_feats(i, :) = feat;
end
% Training labels
y = [ones(1,length(blinks)); 2*ones(1,length(blinks))];
% Train test split
idx = randperm(2*length(blinks));
train_idx = idx(1:3*length(blinks)/4);
test_idx = idx(3*length(blinks)/4+1:end);
% Train KNN
knn = fitcknn(blink_feats(train_idx,:), y(train_idx),'NumNeighbors',3);
% Test predictions
preds = predict(knn, blink_feats(test_idx,:));
% Accuracy
accuracy = sum(preds == y(test_idx))/length(test_idx)
- Load the EOG signal data
- Detect blink locations
- Extract n samples before and after each blink as features
- Create labels (1 for before blink, 2 for after blink)
- Split into train and test
- Train a KNN model
- Make predictions on test set and calculate accuracy